Triton Electronic Systems Ltd.

Intensive Care Ventilator Zisline MV200 / MV300

Safety / Reliability / Comfort

ALL-IN-ONE Ventilator

Treaton

Zisline MV20<mark>0 / MV300</mark>

Intensive Care Ventilator Zisline, versions MV200 / MV300 is modern turbine-drived ventilator that developed to provide efficient respiratory support for all the patients, from adults to child and neonates.

Zisline MV200 / MV300 includes large number of innovative functions that were developed in close cooperation with leading Russian medical experts. The device provides continuous monitoring of gas exchange and evaluation of metabolic needs and has mode of intellectual adaptive ventilation. Zisline MV200 / MV300 provides invasive mandatory and assisted as well as non-invasive ventilation.

Friendly, intuitive interface allows using the device by medical personnel of different qualification.

Extended respiratory monitoring

- · SI stress index;
- P0.1 respiratory effort index;
- $\cdot\,$ Wspont work of the patient's breathing;
- \cdot Rexp resistance to exhalation;
- · Cdyn dynamic compliance.

Integrated functions

- Alveolar recruitment maneuver short-term PEEP increasing to the set level;
- Leak compensation full automatic leakage compensation in the circuit (if leak is too high and cannot be compensated, disconnection alarm is triggered);
- Tube resistance compensation providing the airway pressure taking into account the resistance of the intubation tube;
- 100% oxygenation;
- Standby mode;
- Suction maneuver;
- · Manual breath (manual ventilation);
- · "Freezing" / analysis of graphs;
- Screen lock;
 Nebulizer;
- Nebulizer,
- Mode of the deepen sigh.

Trends

Saving and viewing of trends of the main monitoring parameters during 240 hours.

13 ventilation modes

Zisline MV200 / MV300 provides a wide range of mandatory and assisted modes of invasive ventilation.

Mandatory ventilation: CMV/VCV, CMV/PCV, PCV-VG; synchronized intermittent mandatory ventilation: SIMV/VC, SIMV/PC, SIMV/DC;

modes of spontaneous breathing: CPAP, BiSTEP, APRV; **non-invasive ventilation:** NIV; high flow oxygen therapy HF_O₂; **intelligent ventilation:** iSV; apnea backup.

Advanced patient monitoring

Mainstream CO₂; volumetric CO₂; evaluation of patients metabolic needs; auxiliary pressure; SpO₂; respiratory mechanics; Cardiac output by Fick method.

Built-in turbine

Zisline MV200 / MV300 is independent from compressed air sources due to built-in turbine. Its unique design does not require special maintenance and ensures the operation of the device for 10 years or 40 000 hours.

Reliable autoclavable exhalation valve

Zisline MV200 / MV300 is equipped with exhalation valve, which can be easily disconnected from the device and processed in autoclave. Number of sterilization cycles is unlimited.

Integrated exhalation flow sensor

Does not require any maintenance during the life time.

Traator

-

info@treat-on.com

Simultaneous display of up to three curves and one loop at the user's choice

Graphs: paw (pressure); flow (flow); vol (volume). **Loops:** volume/flow V-F; volume/ pressure V-P; flow/pressure F-P; V/P_{aux} with reference loops. **Advanced graphs:** PCO₂ (in mmHg or %); PO₂ (oxigram in %); SpO₂; iSV; VCO₂ (volume capnogram); Paux.

12.1" and 15" full-color touch LCD display

Allowing to adjust the viewing angle. Display can be fully folded for easy transportation.

Up to 6 h back-up battery

Prolonged operation without mains power ensures high level of patient safety. The rechargetable battery allows doctor to continue ventilation in desired mode up to 6 hours.

Operation of the device is guaranteed from any sources of compressed oxygen:

Central O_2 pipeline; cylinders; oxygen concentrator even with very low O_2 pressure less than 0.5 bar.

口太

 \otimes

Starting settings:

patient's gender

Percent of minute

ventilation MV

and height

Treaton

Intelligent Support Ventilation — iSV mode

Flow (L/min)

5

130

STOP

¢) 🔒 🛠

174 c

6.1 /149

18 /1:1

6.1 /208

9.0 /0.0 Vexp/Vinsp

490 /49

50

i SV

155 V02

208 VC02 mL/m1

1210 REE

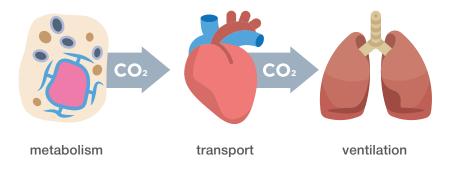
Заряд

36

Activation of inverse ratio ventilation

iSV graph

The intelligent support ventilation (iSV) mode provides the target volume of minute ventilation at any level of patient's spontaneous respiratory activity. iSV automatically adjusts the support pressure level in each respiratory cycle, depending on the changes in the parameters of the bronchopulmonary system. The parameters of iSV are determined extremely simply — by the patient's height and gender.


Advantages of adaptive ventilation iSV

35

- automatically adjusts the I:E ratio in real time in accordance with the respiratory mechanics of the patient;
- \cdot prevents AutoPEEP and protects the patient;
- automatically calculates the static and dynamic limits of safe ventilation for Vt, RB and I:E, ensures strict compliance of ventilation parameters with specified limits.

The adaptive ventilation mode does not exclude the participation of a doctor in the adjustment of the ventilation parameters, but significantly simplifies his work and minimizes the optimization time of the ventilation parameters. The mode is optimal for rapidly changing respiratory needs of the patient, e.g. during weaning from the ventilator.

Capnometry and volumetric capnometry (VCO₂ + ETCO₂)

This monitoring method is recommended for use in intensive care units and operating rooms to improve patient safety. Capnography allows to assess the endotracheal tube location, the resuscitation effectiveness. This type of monitoring is necessary for patients with increased intracranial pressure.

Volumetric capnometry has additional capabilities: allows to assess the alveolar ventilation; tracks the change in physiological dead space at the artificial ventilation.

Zisline MV200 / MV300

Evaluation of patient's metabolic needs

X	Метаболизм
155	VO2 mL/min
208	UCO2 mL/min
1.34	RQ
1210	REE kcal/day
Статус:	Измерение

The peculiarity of patients in intensive care and resuscitation units is metabolic instability caused by the severity of the condition, artificial lung ventilation, sedation, analgesia and extracorporeal detoxification methods. Therefore, metabolic monitoring for such patients is of great importance.

The method of indirect calorimetry used in the Zisline MV200 / MV300 is considered the "gold standard" of metabolic monitoring. In addition to directly measuring the actual resting energy expenditure (REE), this method calculates

the respiratory quotient (RQ) the ratio of carbon dioxide release rate to oxygen consumption rate and assess the contribution of each macronutrient to the total metabolism.

The built-in metabolic module is convenient and easy to use because requires minimal user effort.

The principle of the metabolic needs evaluation is based on measuring the volume of carbon dioxide released, the volume of oxygen absorbed and the subsequent calculation of energy costs using the Weir equation.

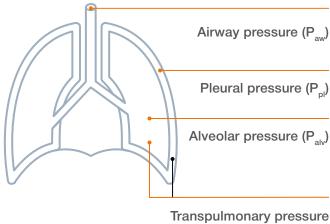
Experience has shown that the individualized program of nutritional support for 3-4 days of treatment in ICU using the metabolic module significantly reduces:

frequency of nosocomial infections; consumption of antibacterial drugs; duration of artificial ventilation.

Parameters	Empirical nutritional support (n = 36)	Nutritional support using metabolic module (n = 74)	(N. Sh. Gajieva — Candidate of Medical Sciences, Neuroresuscitator;
Frequency of pneumonia	28%	6.76%	I. N. Leiderman — MD, Professor; A. A. Belkin — MD,
Frequency of pressure sores	25%	10.8%	Professor. Intensive Therapy, 2008)

Metabolic monitoring is used in programmes of early and resuscitation rehabilitation of patients. Its use makes it possible to shorten the time of rehabilitation and minimize complications after suffering strokes, spinal cord injuries, brain injuries, muscular dystrophies, etc.

Deficiency of calories in critical states can cause


- · postoperative wound suppuration, failure of anastomoses;
- dysfunction of the respiratory musculature and diaphragm;
- hospital-acquired infections (tracheobronchitis, VAP, etc.); .
- . high consumption of antibiotics;
- greater consumption of blood components (FFP, albumin); pressure sores, anemia;
- prolonged bed rest in ICU and inpatient department.

Excess calories in critical states lead to

- hyperglycemia;
- growth of CO2 production;
- · desynchronization with the ventilator;
- hyperthermia;
- aggravation of ALI / ARDS;
- · fatty hepatosis.

Treaton

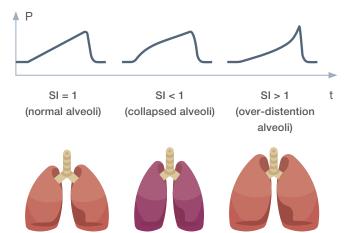
Auxiliary pressure P_{aux}

 $(P_{I} = P_{alv} - P_{pl})$

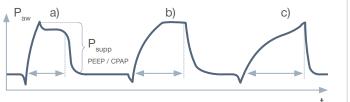
An auxiliary pressure channel allows to the health practitioner to obtain valuable practical information. The doctor can measure the pressure directly in the trachea and esophagus. The pressure in esophagus is equal to the intrapleural pressure.

Among the main principles of protective artificial lung ventilation the PEEP is considered to be an important component for the prevention of atelectotrauma.

P transpulmonary = P alveolar — P pleural.


Transpulmonary pressure is the only objective criterion for setting up PEEP. Its monitoring allows reducing or eliminating lung injuries during the ventilation.

Extended Respiratory Monitoring


Extended respiratory monitoring allows to set comfortable and safe ventilation parameters in accordance with the respiratory needs of the patient.

Extended respiratory monitoring includes

Stress index is an indicator of the correct choice of PEEP and the inspiration volume Vt. Its deviation from "1" shows non-optimal choice of ventilation parameters. RSBI (rapid shallow breathing index) indicates the adequacy of spontaneous ventilation under pressure support (CPAP with PS) and is used to assess patient's readiness for weaning from respiratory support. AutoPEEP monitoring. In some cases, the selection of parameters for effective and safe ventilation without AutoPEEP monitoring is not possible, e.g. for patients with bronchial obstruction and an increased time constant. Pramp — rate of inspiratory pressure rise. Setting up Pramp allows adapting the device to the respiratory needs of the patient.

Influence of P_{ramp} to the inspiration pressure waveform a) high rise time of P_{ramp}
b) optimal rise time of P_{ramp}
c) low rise time of P_{ramp}

6

Technical Specification

Power	AC 100–250 V, 50/60 Hz. Built-in battery provides from 6 h of independent operation		
Input oxygen pressure	0.15–0.6 MPa (1.5–6 bar). low-pressure oxygen sour pressure range: 0.05–0.15	ces with operating	
Alarms	High, medium and low priority alarms: discon- nection, apnea, occlusion, low/high Vexp, low/ high minute volume, low PEEP, low PIP, low/ high O_2 concentration, maximum pressure is reached, low/high RB, low/high input O_2 pres- sure, no mains voltage, low/high EtCO ₂ (option), low pulse signal (option), low/high SpO ₂ (option), low/high PR (option).		
	Diagnostic messages at technical malfunctions of the device. Log of alarms and events (up to 1000 messages).		
	1000 messages).		
Interfaces	1000 messages). Ethernet for connection to	PC, USB	
Interfaces Standards		60601-1,	
Standards	Ethernet for connection to Device complies with IEC ISO 80601-2-12, ISO 806 ISO 80601-2-61	60601-1,	

Ventilation Parameters

Tidal volume, V_t	10–3000 ml
Minute volume, MV	0–60 lpm
Rate of breathing, RB	0–120 lpm
Inspiratory pressure, Pi	0–100 H ₂ O (mbar)
Flow trigger, F _{trig} Pressure trigger, P _{trig}	0.5–20 lpm 0.5–20 cmH ₂ O (mbar)
I:E ratio	1:99–60:1
Positive end-expiratory pressure, PEEP	0–50 cmH ₂ O (mbar)

Digital Monitoring

Peak inspiratory pressure	PIP
Mean pressure for the respiratory cycle	Pm
Positive end-expiratory pressure	PEEP
Residual pressure level in lungs	AutoPEEP
Minute volume of breathing	MV
Minute volume of spontaneous breaths	MV _{spont}
Expiratory volume	V _{exp}
Inspiratory volume	V _{Vinsp}
Respiratory rate	RB
Inspiratory:expiratory ratio	I:E
Fractional concentration of inspired oxygen	FiO2
Oxygen consumption (option)	dO ₂
Frequency of spontaneous breaths	f _{spont}
Leakage flow from the breathing circuit	Leak
Static compliance	C _{st}
Static resistance	R _{st}
Dynamic compliance / resistance	C, R (LSF)
Concentration (partial pressure) of CO ₂ in the inhaled and exhaled gas mixture (option)	FiCO ₂ , EtCO ₂
Oxygen saturation of arterial blood hemoglobin (option)	SpO ₂
Plateau pressure	P _{plat}
Peak inspiratory flow	FlowPeak
Elimination of CO_2 per minute (option)	VCO ₂
Minute alveolar ventilation, alveolar ventilation (option)	$MV_{\mathrm{alv}},V_{\mathrm{alv}}$
Functional dead space (option)	V _d
Cardiac output according to Fick (option)	CB
Auxiliary external pressure (option)	P _{aux}
Transpulmonary pressure (option)	P _{tp}
True pressure level in lungs at the end of expiration	PEEP _{tot}
Flow at the end of expiration	ExpEndFlow
Expiratory time constant	RC _{exp}
Inspiratory time constant	RC _{insp}

Treaton

We continuously improve the technological principles and implement new profitable solutions based on market demands D

In biomedical signal processing, gas monitoring and respiratory support since 1989

12/5, Sibirskiy Trakt str. Ekaterinburg, 620100 Russian Federation

Quality management system certified as meeting the requirements of EN ISO 13485 Third version

January 2022